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Panchromatic Image (50cm)
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Multispectral Image (2m)
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Pansharpened Image (50cm)
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Hyperspectral Imagery

Hyperspectral Images
I Spectral: same scene observed at different wavelengths
I Spatial: pixel represented by a vector of hundreds of measurements.

Hyperspectral Cube
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Fusion of Multiband Images

(a) (b) (c)

(a) Hyperspectral Image (size: 99× 46× 224, res.: 80m × 80m) (b) Panchromatic Image (size:
396× 184× 1 res.: 20m × 20m) (c) Target (size: 396× 184× 224 res.: 20m × 20m)

Name AVIRIS (HS)1 SPOT-5 (MS) Pleiades (MS) WorldView-3 (MS)
Res. (m) 20 10 2 1.24
# bands 224 4 4 8

1R. O. Green et al., “Imaging spectroscopy and the airborne visible/infrared imaging
spectrometer (AVIRIS),” Remote Sens. of Environment, 1998.
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State-of-the-Art

Classes of Existing Methods

I Component Substitution
I Multiresolution Analysis
I Bayesian Inference
I Matrix Factorization
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State-of-the-Art

Component Substitution

Flowchart of CS Methods [Vivone2015]
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State-of-the-Art

Component Substitution

Principle

M̂Sk = M̃Sk + gk (P− IL) with IL =

mλ∑
k=1

wk M̃Sk (1)

I Interpolate the MS Image
I Add details P − IL controlled by injection gains gk

Strategies for choosing the weights wk and gains gk

I Intensity, Hue, Saturation (IHS), GHIS
I Principal component analysis
I High-pass filter
I Optimization of a global distorsion using genetic algorithms
I Optimization by linear regression
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State-of-the-Art

Component Substitution
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State-of-the-Art

Image Characteristics

Data Characteristics [Loncan2015]
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State-of-the-Art

Component Substitution

Examples of fusion results using CS methods. (a) Reference,
(b) Interpolated HS image, (e) Gram-Schmidt, (f) PCA.
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State-of-the-Art

MultiResolution Analysis (MRA)

Flowchart of MRA Methods [Vivone2015].
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State-of-the-Art

MultiResolution Analysis

Principle

M̂Sk = M̃Sk + gk (P− PL), k = 1, ...,mλ (2)

where PL is a low-pass version of P.

Strategies for constructing PL and choosing the gains gk

I Smoothing filter-based intensity modulation (SFIM)

PL = P ∗ hLP

where hLP can be a box, Gaussian or Laplacian filter.
I Pyramidal decompositions: low-pass filter, wavelets, ...
I High-pass modulation paradigm for the gains

gk = M̃Sk

(
1

mλ

mλ∑
k=1

M̃Sk

)−1

, k = 1, ...,mλ.
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State-of-the-Art

MultiResolution Analysis
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I B. Garguet-Duport, et al., “The use of multiresolution analysis and wavelet
transform for merging SPOT panchromatic and multispectral image data,”
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imagery,” Photogramm. Eng. Remote Sens., vol. 72, no. 5, pp. 591-596, May
2006.
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State-of-the-Art

Multiresolution Analysis

Examples of fusion results using MRA methods. (a) Reference, (b)
Interpolated HS image, (c) SFIM, (d) Generalized Laplacian Pyramid.
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State-of-the-Art

Bayesian Methods

Observation models
I Vectorized hyperspectral (HS) image

yH = Wx + nH

where x ∈ Rmλn, yH,nH ∈ Rmλm (with m < n), W ∈ Rmλm×mλn performs
spatial averaging and downsampling and nH ∼ N (0,CnH ).

I Vectorized Panchromatic (PAN) or Multispectral (MS) image: (yM, x)
jointly Gaussian. Thus

x|yM ∼ N (µM,CM)

MAP estimator
I Direct form

x̃ =
[
WT C−1

nH W + C−1
M

]−1 [
WT C−1

nH yH + C−1
M µM

]
I After matrix inversion lemma

x̃ = µM + CMWT
[
WCMWT + CnH

]−1
(yH −WµM)

Inversion of an mλm ×mλm (instead of an mλn ×mλn) matrix.
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State-of-the-Art

Determination of µM and CM

Using the previous observation models (Hardie, 2004)

I A priori mean of the target image estimated using a spectral
interpolation of the PAN image

I Conditional independence⇒ block diagonal matrix CM. Estimation of
the diagonal matrices assuming adjacent pixels share the same
covariance matrix. Adjacency determined by using clustering.

Using the stochastic mixing model (Eismann, 2005)

yi,H =
K∑

k=1

ai,k mk ,

with ai,k > 0,
∑K

k=1 ai,k = 1 and mk is a Gaussian vector.

Using a wavelet decomposition of the HS image (Zhang, 2009)

I Reduces spatial correlation
I Allows a separate estimation of the covariance matrices at different

resolution levels
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State-of-the-Art

Bayesian Methods
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State-of-the-Art

Matrix Factorization

Observation models
I Hyperspectral (HS) image

YH = XW + NH

where X ∈ Rmλ×n, YH,NH ∈ Rmλ×m (with m < n), W ∈ Rn×m performs
spatial averaging and downsampling. Note that the distribution of NH

does not need to be specified.
I Panchromatic (PAN) or Multispectral (MS) image

YM = RX + NM

where Y ∈ Rnλ×n, R ∈ Rnλ×mλ is the spectral response of the MS
sensor and NM ∈ Rnλ×m

Linear mixing model
I Target image

X = MA + N
where M ∈ Rmλ×p and A ∈ Rp×n are the endmember and abundance
matrices and p is the number of spectral signatures.
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State-of-the-Art

Matrix Factorization

New observation models

YH = MWA + noise, YM = MRA + noise

where WA = AW is the spatially degraded abundance matrix and MR = RM is
the spectrally degraded endmember matrix.

Strategy
Unmix the HS and MS images alternatively using nonnegative matrix
factorizations (NMF)

I Step 1: estimate the endmember matrix M and WA by applying NMF to
the HS image (initialized by the vertex component analysis (VCA))

I Step 2: estimate the abundance matrix A and MR by applying NMF to
the MS image

I Step 2: fusion
X̂ = M̂Â
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State-of-the-Art

Matrix Factorization
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State-of-the-Art

Matrix Factorization

Examples of fusion results using matrix factorization (a) Reference,
(b) Interpolated HS image, (h) Coupled NMF.
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Revisited Bayesian Fusion

Motivations: Use the Spectral Response of the PAN or MS Sensor
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Spectral Responses. (a) IKONOS, (b) SPOT5, (c) LANDSAT.
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Revisited Bayesian Fusion

Forward model

YH = XBS + NH, YM = RX + NM

I X ∈ Rmλ×n: full resolution unknown image
I YH ∈ Rmλ×m and YM ∈ Rnλ×n: observed HS and MS images
I B ∈ Rn×n: cyclic convolution operator acting on the bands
I S ∈ Rn×m: downsampling matrix
I R ∈ Rnλ×mλ : spectral response of the MS sensor
I NH ∈ Rmλ×m and NM ∈ Rnλ×n: HS and MS noises, assumed to

be a band-dependent Gaussian sequences

(d) Kernel of B
(Spatial blurring)
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(e) R (Spectral blurring)
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Revisited Bayesian Fusion

Reparameterization

Dimensionality reduction

Projection of the data X in a lower-dimensional subspace (Rm̃λ ): X = HU,
where H is an m̃λ ×mλ projection matrix2.

2J. M. Bioucas-Dias et al., “Hyperspectral subspace identification,” IEEE Trans. Geosci. and
Remote Sens., vol. 46, no. 8, pp. 2435-2445, 2008.
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Revisited Bayesian Fusion

Likelihoods

I Likelihood of the observations3

YH|U, s2
H ∼MNmλ,m(HUBS, diag

(
s2

H

)
, Im)

YM|U, s2
M ∼MN nλ,n(RHU, diag

(
s2

M

)
, In)

where s2
H =

[
s2

H,1, . . . , s
2
H,mλ

]T
and s2

M =
[
s2

M,1, . . . , s
2
M,nλ

]T
.

I Joint likelihood

f
(
YH,YM|U,s2) = f

(
YH|U, s2

H

)
f
(
YM|U, s2

M

)
with s2 =

{
s2

H, s
2
M

}
3The probability density function of a matrix normal distribution is defined by

p(X|M,Σr ,Σc) =
exp

(
− 1

2 tr
[
Σ−1

c (X−M)TΣ−1
r (X−M)

])
(2π)np/2|Σc |n/2|Σr |p/2
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Revisited Bayesian Fusion

Parameter Priors

I Pixel vectors in the lower dimensional subspace: independent
conjugate Gaussian priors

U|Ū,Σ ∼MN
(
Ū,Σ, In

)
I Noise variances: independent conjugate inverse-gamma priors

s2
H,` & s2

M,`|ν, γ ∼ IG
(ν

2
,
γ

2

)
Flexible distribution whose shape can be adjusted from (ν, γ)

Assumptions
I Ū : fixed using an interpolated hyperspectral image (obtained

using splines) projected onto the subspace
I ν: fixed (disappears later)
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Revisited Bayesian Fusion

Hyperparameter Prior

Hyperparameter vector: Φ = {Σ, γ}

I Hyperparameter Σ : Inverse-Wishart (IW) distribution

Σ ∼ W−1(Ψ, η)

where Ψ and η are fixed to provide a non-informative prior

I Hyperparameter γ: Jeffreys’ non-informative prior

f (γ) ∝ 1
γ

1R+ (γ)
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Revisited Bayesian Fusion

Joint Posterior

Using Bayes theorem, the joint posterior distribution is

f (θ,Φ|YH,YM) ∝ f (YH,YM|θ) f (θ|Φ) f (Φ)

where
I unknown parameters: θ =

{
U, s2

H, s
2
M

}
I unknown hyperparameters: Φ = {Σ, γ}

How can we estimate θ and Φ?

I Marginalize the hyperparameter γ
I Sample according to the joint posterior f

(
U,s2,Σ|YH,YM

)
by

using a block Gibbs sampler, which can be easily implemented
since all the conditional distributions associated with
f
(
U,s2,Σ|YH,YM

)
are simple.
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Revisited Bayesian Fusion

Block Gibbs sampler4

for t = 1 to NMC do
% Sampling the image covariance matrix

Sample Σ(t) from f (Σ|U(t−1),s2(t−1)
,YH,YM)

% Sampling the multispectral noise variances

for ` = 1 to nλ do
Sample s2(t)

M,` from f (s2
M,`|U,YM),

end for
% Sampling the hyperspectral noise variances

for ` = 1 to mλ do
Sample s2(t)

H,` from f (s2
H,`|U,YH),

end for
% Sampling the high-resolved image

Sample U(t) using a Hamiltonian Monte Carlo algorithm
end for

4Q. Wei et al., “Bayesian fusion of multi-band images,” IEEE J. Sel. Topics Signal Process., vol.
9, no. 6, pp. 1117-1127, Sept. 2015.
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Revisited Bayesian Fusion

Conditional Distributions

I Covariance matrix of the image Σ

Σ|u,s2,YH,YM ∼

W−1

(
Ψ +

mxmy∑
i=1

(ui − µ
(i)
u )T (ui − µ

(i)
u ),n + η

)

I Noise variance vector s2

s2
H,`|U,YH ∼ IG

m
2
,

[
‖YH − HUBS‖2

F

]
`

2


s2

M,`|U,YH ∼ IG

n
2
,

[
‖YM − RHU‖2

F

]
`

2
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Revisited Bayesian Fusion

Conditional Distributions (Cont.)

I Highly-resolved image U

− log f (U|Σ,s2,YH,YM) = 1
2‖Λ

− 1
2

H (YH − HUBS) ‖2
F +

1
2‖Λ

− 1
2

M (YM − RHU) ‖2
F + 1

2‖Σ
− 1

2 (U− µU) ‖2
F + C

I Not a matrix normal distribution but a normal distribution in vector
form: huge covariance matrix

I Very difficult to draw samples directly from the conditional
distribution w.r.t. U

I A Hamiltonian Monte Carlo method5 is used to sample this high
dimensional Gaussian distribution.

I Note: Other techniques based on perturbation-optimization
strategies6 might also be used.

5R. N. Neal, “MCMC using Hamiltonian dynamics,” Handbook of Markov Chain Monte Carlo, S.
Brooks, A. Gelman, G. L. Jones, and X.-L. Meng (editors), Chapman & Hall - CRC Press, pp.
113-162, 2010.

6F. Orieux et al.. “Sampling high-dimensional Gaussian distributions for general linear inverse
problems,” IEEE Signal Process. Lett., vol. 19, no. 5, May 2012.
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Revisited Bayesian Fusion

Hamiltonian Monte Carlo Methods

Classical Metropolis-Hastings moves

I Classical proposal: random walk
I Accept/reject procedure

Can be inefficient for sampling large vectors (low acceptance rate and mixing
properties)

Deterministic gradient based methods

I Well adapted to update vector/matrix elements simultaneously
I Local behavior of a cost function

Hamiltonian Monte Carlo methods

I Consideration of the local curvature of the target density to build an
accurate proposal distribution for sampling vector/matrix elements
simultaneously
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Revisited Bayesian Fusion

Wald’s Protocol

Hyperspectral
reference X

Blurring and
downsampling

Multispectral
spectral response

Observed hyper-
spectral image YH

Observed multi-
spectral image YM

Multiband
fusion approach

Fused image X̂

Quality measures

Q
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Revisited Bayesian Fusion

Qualitative Results (AVIRIS dataset)
D

at
a

(a) HS (b) MS (c) Reference

Fu
si

on
R

M
S

E

(d) MAP[Hardie2004] (e) Wavelet MAP[Zhang2012] (f) MCMC
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Revisited Bayesian Fusion

Quantitative Performance Measures

I RMSE/RSNR (Root Mean Square Error): a similarity measure
between the target image X and the fused image X̂

RMSE(X, X̂) =
1

nmλ
‖X− X̂‖2

F

RSNR(X, X̂) = log
1

nmλ

‖X‖2
F

RMSE

The smaller RMSE/larger RSNR, the better the fusion quality.
I SAM (Spectral Angle Mapper): spectral distortion between the

actual and estimated images

SAM(xn, x̂n) = arccos
(
〈xn, x̂n〉
‖xn‖2‖x̂n‖2

)
The overall SAM is obtained by averaging the SAMs computed
from all image pixels. The smaller the absolute value of SAM, the
less important the spectral distortion.
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Revisited Bayesian Fusion

Quantitative Performance Measures

I UIQI (Universal Image Quality Index): related to the correlation,
luminance distortion and contrast distortion of the estimated
image w.r.t. the reference image. The UIQI between two images
a and â is

UIQI(a, â) =
4σ2

aâµaµâ

(σ2
a + σ2

â)(µ2
a + µ2

â)

where
(
µa, µâ, σ

2
a , σ

2
â

)
are the sample means and variances of a

and â, and σ2
aâ is the sample covariance of (a, â). The range of

UIQI is [−1,1]. The larger UIQI, the better.
I DD (degree of distortion): DD between two images X and X̂ is

defined as

DD(X, X̂) =
1

nmλ
‖vec(X)− vec(X̂)‖1.

The smaller DD, the better.

Jean-Yves Tourneret Bayesian Fusion of Multi-band Images 49 / 107



Bayesian Fusion of Multi-band Images
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Quantitative Performance Measures

I ERGAS The relative dimensionless global error in synthesis
(ERGAS) calculates the amount of spectral distortion in the
image. This measure of fusion quality is defined as

ERGAS = 100× 1
d2

√√√√ 1
mλ

mλ∑
i=1

(
RMSE(i)

µi

)

where 1/d2 is the ratio between the pixel sizes of the MS and HS
images, µi is the mean of the i th band of the HS image, and mλ

is the number of HS bands. The smaller ERGAS, the smaller the
spectral distortion.
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Revisited Bayesian Fusion

Quantitative Results (AVIRIS dataset)

Table: Performance of HS+MS fusion methods in terms of: RSNR (db), UIQI,
SAM (deg), ERGAS and DD(×10−2) (AVIRIS dataset).

Methods RSNR UIQI SAM ERGAS DD Time(s)
MAP7 23.33 0.9913 5.05 4.21 4.87 1.6

Wavelet8 25.53 0.9956 3.98 3.95 3.89 31
MCMC 26.74 0.9966 3.40 3.77 3.33 530

Advantages
I Samples generated by the proposed method can be used to

compute uncertainties about the estimates (confidence intervals)
I Generalization to more complex problems (non-Gaussianities,

nonlinearity, etc)
I Noise variance estimation

7Hardie et al., “Application of the Stochastic Mixing Model to Hyperspectral Resolution
Enhancement,” IEEE Trans. Image Process., vol. 13, no. 9, Sept. 2004.

8Zhang et al., “Noise-Resistant Wavelet-Based Bayesian Fusion of Multispectral and
Hyperspectral Images,” IEEE Trans. Geosci. and Remote Sens., vol. 47, no. 11, Nov. 2009.
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Noise Variance Estimation
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Figure: Noise variances and their MMSE estimates. (Top) HS image.
(Bottom) MS image.

I Good estimation performance
I Track noise variance variations with good performance
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Accelerating With Optimization

The negative logarithm of the joint posterior distribution p (θ,Σ|Y) is
given as

L(U,s2,Σ)
= − log p (θ,Σ|Y)

= − log p (YH|θ)− log p (YM|θ)−
n∑

l=1
log p (ul |Σ)

−
mλ∑
i=1

log p
(

s2
H,i

)
−

nλ∑
j=1

log p
(

s2
M,j

)
− log p (Σ)− C

I MAP estimator: minimizing the function L(U,s2,Σ) with respect
to U, s2 and Σ iteratively

I use a Block coordinated descent (BCD) algorithm 9

9Q. Wei et al., “Bayesian fusion of multispectral and hyperspectral images using a block
coordinate descent Method”, in IEEE GRSS Workshop on Hyperspectral Image and SIgnal
Processing: Evolution in Remote Sensing (WHISPERS), Tokyo, Japan, Jun. 2015.
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Block Coordinated Descent for HS and MS Image Fusion

Input: YH, YM, m̃λ, B, S, R, s2
0, Σ0

I Ĥ← PCA(YH, m̃λ) ; /* Subspace transform matrix */

for t = 1,2, . . . to stopping rule do
Ut = arg min

U
L(U,s2

t−1,Σt−1) ; /* Optimize w.r.t. U */

s2
t = arg min

s2
L(Ut ,s2,Σt−1) ; /* Optimize w.r.t. s2

*/

Σt = arg min
Σ

L(Ut ,s2
t ,Σ) ; /* Optimize w.r.t. Σ */

end
Output: X̂ = ĤÛ (High resolution HS image)

Remarks
The convergence is guaranteed10.

10D. P. Bertsekas. Nonlinear Programming. Athena Scientific Belmont, 1999.
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Minimization w.r.t. U

Using the linear model, dimensionality reduction, fusing the HS and
MS images can be formulated as finding U minimizing the cost
function

LU(U) = 1
2‖Λ

− 1
2

H (YH − HUBS) ‖2
F + 1

2‖Λ
− 1

2
M (YM − RHU) ‖2

F
+ 1

2‖Σ
− 1

2 (U− µU) ‖2
F .

I First two terms: data fidelity terms for the HS+MS images
(likelihoods)

I Last term: penalty ensuring appropriate regularization (prior)

Difficulties

I Large dimensionality of U
I Diagonalization of the linear operators H(·)BS not possible
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Revisited Bayesian Fusion

Alternating Direction Method of Multipliers (ADMM)
Idea: transform the unconstrained optimization with respect to U into a
constrained one via a variable splitting “trick”, and then attack this
constrained problem using an augmented Lagrangian (AL) method11

I Splittings: H1 = UB, H2 = U and H3 = U
I Respective scaled dual variable: G1,G2,G3

L(U,H1,H2,H3,G1,G2,G3) Deconvolution

=
1
2
∥∥Λ− 1

2
H (YH − HH1S)

∥∥2
F +

µ

2
∥∥UB− H1 −G1

∥∥2
F +

1
2
∥∥Λ− 1

2
M (YM − RHH2)

∥∥2
F +

µ

2
∥∥U− H2 −G2

∥∥2
F +

1
2
∥∥Σ− 1

2 (µU − H3)
∥∥2

F +
µ

2
∥∥U− H3 −G3

∥∥2
F

11M. Afonso et al., “An augmented Lagrangian approach to the constrained optimization
formulation of imaging inverse problems,” IEEE Trans. Image Process., vol. 20, no. 3,pp. 681-695,
2011.

Jean-Yves Tourneret Bayesian Fusion of Multi-band Images 57 / 107



Bayesian Fusion of Multi-band Images
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Alternating Direction Method of Multipliers (ADMM)
Idea: transform the unconstrained optimization with respect to U into a
constrained one via a variable splitting “trick”, and then attack this
constrained problem using an augmented Lagrangian (AL) method

I Splittings: H1 = UB, H2 = U and H3 = U
I Respective scaled dual variable: G1,G2,G3

L(U,H1,H2,H3,G1,G2,G3) Upsampling

=
1
2
∥∥Λ− 1

2
H (YH − HH1S)

∥∥2
F +

µ

2
∥∥UB− H1 −G1

∥∥2
F +

1
2
∥∥Λ− 1

2
M (YM − RHH2)

∥∥2
F +

µ

2
∥∥U− H2 −G2

∥∥2
F +

1
2
∥∥Σ− 1

2 (µU − H3)
∥∥2

F +
µ

2
∥∥U− H3 −G3

∥∥2
F
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Alternating Direction Method of Multipliers (ADMM)
Idea: transform the unconstrained optimization with respect to U into a
constrained one via a variable splitting “trick”, and then attack this
constrained problem using an augmented Lagrangian (AL) method

I Splittings: H1 = UB, H2 = U and H3 = U
I Respective scaled dual variable: G1,G2,G3

L(U,H1,H2,H3,G1,G2,G3) Spectral Unmixing

=
1
2
∥∥Λ− 1

2
H (YH − HH1S)

∥∥2
F +

µ

2
∥∥UB− H1 −G1

∥∥2
F +

1
2
∥∥Λ− 1

2
M (YM − RHH2)

∥∥2
F +

µ

2
∥∥U− H2 −G2

∥∥2
F +

1
2
∥∥Σ− 1

2 (µU − H3)
∥∥2

F +
µ

2
∥∥U− H3 −G3

∥∥2
F
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Revisited Bayesian Fusion

Alternating Direction Method of Multipliers (ADMM)
Idea: transform the unconstrained optimization with respect to U into a
constrained one via a variable splitting “trick”, and then attack this
constrained problem using an augmented Lagrangian (AL) method

I Splittings: H1 = UB, H2 = U and H3 = U
I Respective scaled dual variable: G1,G2,G3

L(U,H1,H2,H3,G1,G2,G3) Denoising

=
1
2
∥∥Λ− 1

2
H (YH − HH1S)

∥∥2
F +

µ

2
∥∥UB− H1 −G1

∥∥2
F +

1
2
∥∥Λ− 1

2
M (YM − RHH2)

∥∥2
F +

µ

2
∥∥U− H2 −G2

∥∥2
F +

1
2
∥∥Σ− 1

2 (µU − H3)
∥∥2

F +
µ

2
∥∥U− H3 −G3

∥∥2
F
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Revisited Bayesian Fusion

(a) MAP (b) Wavelet MAP (c) MCMC (d) BCD
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Revisited Bayesian Fusion

Table: Performance of the compared fusion methods: RSNR (in dB), UIQI,
SAM (in degree), ERGAS, DD (in 10−2) and time (in second) (AVIRIS
dataset).

Methods RSNR UIQI SAM ERGAS DD Time
MAP 23.14 0.9932 5.147 3.524 4.958 3

Wavelet MAP 24.91 0.9956 4.225 3.282 4.120 72
MCMC 25.92 0.9971 3.733 2.926 3.596 6228
BCD 25.85 0.9970 3.738 2.946 3.600 96

I Promising results for the considered quality measures
I Significant reduction in computation time: Save a lot of time!
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Sparse Prior Based on Dictionary Learning

Sparse Regularization

Motivation
Self-similarity property of natural image patches

image patches
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Sparse Prior Based on Dictionary Learning

Remote Sensing Images

image patches
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Sparse Regularization
The patches of the target image U can be sparsely approximated on
an over-complete dictionary (with columns referred to as atoms).
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Penalized Inverse Problem

Based on the previous observation models and dimensionality
reduction, fusing the HS and MS images can be formulated as the
following inverse problem

min
U

1
2
∥∥Λ− 1

2
H (YH − HUBS)

∥∥2
F︸ ︷︷ ︸

HS data term
∝ln p(YH|U)

+
1
2
∥∥Λ− 1

2
H (YM − RHU)

∥∥2
F︸ ︷︷ ︸

MS data term
∝ln p(YM|U)

+ λφ(U)︸ ︷︷ ︸
regularizer
∝ln p(U)

,
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Sparse Regularization
Regularizer

φ(U) =
1
2
∥∥U− Ū (D,A)

∥∥2
F

Separating each band of the target image leads to

φ(U) =
1
2

m̃λ∑
i=1

∥∥Ui − P (DiAi )
∥∥2

F

I Ui ∈ Rn is the i th band (or row) of U ∈ Rm̃λ×n

I Di ∈ Rnp×nat is the dictionary dedicated to the i th band of U (np is
the patch size and nat is the number of atoms) and
D =

[
D1, · · · ,Dm̃λ

]
I Ai ∈ Rnat×npat is the i th band’s code (npat is the number of patches

associated with the i th band) and A =
[
A1, · · · ,Am̃λ

]
I P(·) is a linear operator that averages the overlapping patches of

each band to restore the target image
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How can we obtain the
dictionary D and the code A?
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Dictionary Learning and Sparse Coding

Dictionary Learning
Learn12 the set of over-complete dictionaries D =

[
D1, · · · ,Dm̃λ

]
:

applying a DL algorithm on the rough estimation of U (constructed from the
MS and HS images)

I K-SVD method
I Online Dictionary Learning (ODL) method

Sparse Coding

I Orthogonal Matching Pursuit (OMP): to estimate the sparse code Ai

(with nmax coefficients) for each band Ui

I Support (Ωi ⊂ N2, i = 1, · · · , m̃λ): The positions of the non-zero
elements of the code Ai are also identified

12M. Elad et al., “Image denoising via sparse and redundant representations over learned
dictionaries,” IEEE Trans. Image Process., vol. 15, no. 12, pp. 3736–3745, 2006.
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Re-estimation of the Sparse Code

Inspired by hierarchical models frequently encountered in Bayesian inference,
we propose to include the code A within the estimation process.

φ(U,A) =
1
2

m̃λ∑
i=1

∥∥Ui − P (DiAi )
∥∥2

F + µa
∥∥Ai
∥∥

0 NP hard!

where ‖.‖0 is the `0 counting function (or `0 norm) and µa is a regularization
parameter.

By fixing the supports Ωi , the `0 norm reduces to a constant. Hence,

φ(U,A) =
1
2

m̃λ∑
i=1

∥∥Ui − P (DiAi )
∥∥2

F s.t. Ai,\Ωi = 0

where Ai,\Ωi = {Ai (l , k) | (l , k) 6∈ Ωi}.
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Final Optimization Problem

Joint optimization with respect to U and A

min
U,A

L(U,A) = 1
2

∥∥Λ− 1
2

H (YH − HUBS)
∥∥2

F + 1
2

∥∥Λ− 1
2

M YM − RHU
∥∥2

F +

λ
2

m̃λ∑
i=1

(∥∥Ui − P (DiAi )
∥∥2

F

)
, s.t. Ai,\Ωi = 0

Solution

I Solved by minimizing w.r.t. U and A alternatively
I Each sub-problem is strictly convex
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Optimization with Respect to U

min
U

L(U) = 1
2

∥∥Λ− 1
2

H (YH − HUBS)
∥∥2

F + 1
2

∥∥Λ− 1
2

M (YM − RHU)
∥∥2

F +

λ
2

m̃λ∑
i=1

(∥∥Ui − P (DiAi )
∥∥2

F

)
,

Difficulties

I Large dimensionality of U
I Diagonalization of the linear operators H(·)BS and P(·) not possible

Solution
Alternating Direction Method of Multipliers (ADMM)
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Optimization with Respect to A

Optimization with respect to Ai (i = 1, · · · , m̃λ) conditional on Ui

min
Ai

∥∥Ui − P(DiAi )
∥∥2

F s.t. Ai,\Ωi = 0

Remarks

I The optimization with respect to Ai considers only the non-zero
elements of Ai , denoted as Ai,Ωi = {Ai (l , k) | (l , k) ∈ Ωi}

I Standard least square (LS) problem which can be solved analytically
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Alternate Optimization Scheme13

Input: YH, YM, B, S, R, SNRH, SNRM, m̃λ, nmax

I Approximate Ū using YM and YH /* Rough estimation of U*/
I D̂← ODL(Ū) /* Online dictionary learning */
I Â← OMP(D̂, Ū, nmax) /* Sparse coding */
I Ω̂← Â 6= 0 /* Computing support */
I Ĥ← PCA(YH, m̃λ) /* Computing subspace transform matrix */

/* Start alternate optimization */
for t = 1, 2, . . . to stopping rule do

Ût ∈ {U : L(U, Ât−1) ≤ L(Ût−1, Ât−1)} /* solved with ADMM */
Ât ∈ {A : L(Ût ,A) ≤ L(Ût , Ât−1)} /* solved with LS */

end
X̂ = ĤÛ
Output: X̂ (high resolution HS image)

13Q. Wei et al., “Hyperspectral and multispectral image fusion based on a sparse
representation”, IEEE Trans. Geosci. and Remote Sens., vol. 53, no. 7, pp. 3658-3668, July 2015.

Jean-Yves Tourneret Bayesian Fusion of Multi-band Images 77 / 107



Bayesian Fusion of Multi-band Images

Sparse Prior Based on Dictionary Learning

Image Characteristics

Data Characteristics [Loncan2015]
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Qualitative Results (Pavia Dataset)

(a) Ref (b) HS (c) MS

(d) MAP (e) Wavelet (f) CNMF (g) Gaussian (h) Sparse

Figure: Pavia dataset
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Sparse Prior Based on Dictionary Learning

Quantitative Results (Pavia Dataset)

Table: Performance of different MS + HS fusion methods (Pavia dataset):
RMSE (in 10−2), UIQI, SAM (in degree), ERGAS, DD (in 10−3) and Time (in
second).

Methods RMSE UIQI SAM ERGAS DD Time
MAP 1.148 0.9875 1.962 1.029 8.666 3

Wavelet MAP 1.099 0.9885 1.849 0.994 8.349 75
CNMF 1.119 0.9857 2.039 1.089 9.007 14

Gaussian 1.011 0.9903 1.653 0.911 7.598 6003
Sparse 0.947 0.9913 1.492 0.850 7.010 282

The proposed method provides promising results for the considered
quality measures.
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Transforming Optimization to Solving a Sylvester Equation

Forward model

YH = XBS + NH, YM = RX + NM

s.t. X = HU

Negative log-likelihood (in subspace)

− log p (Y |U) = − log p (YH|U)− log p (YM|U) + C

= 1
2‖Λ

− 1
2

H (YH − HUBS) ‖2 + 1
2‖Λ

− 1
2

M (YM − RHU) ‖2 + C

Minimizing the likelihood w.r.t. U⇔ solve a generalized Sylvester
matrix equation

[
HHΛ−1

H H
]

U
[
BS (BS)H

]
+
[
(RH)H

Λ−1
M (RH)

]
U = term ind. on U

I BS (BS)H is not diagonalizable!
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Assumption 1
The blurring matrix B is a block circulant matrix with circulant blocks (BCCB).

Assumption 2
The decimation matrix S corresponds to downsampling the original signal and
its conjugate transpose SH interpolates the decimated signal with zeros, e.g.,

S =


1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1


These two assumptions are used to compute an explicit solution of the
Sylvester equation.
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Fast fUsion Based on a Sylvester Equation (FUSE)[
HHΛ−1

H H
]

U
[
BS (BS)H

]
+
[
(RH)H

Λ−1
M (RH)

]
U = term ind. on U

3 Main Steps

I Left multiply by
(
HHΛ−1

H H
)−1

: UC2 + C1U = C3, where C2 = BS (BS)H.

Lemma 1
The equality FHSF = 1

d Jd ⊗ Im holds, where F is the DFT matrix, S =

SSH , Jd is the d×d matrix of ones and Im is the m×m identity matrix.

I Diagonalize C1 and use Lemma 1 to simplify C2:

ŪM + ΛCŪ = C̄3

with a diagonal matrix ΛC and M = 1
d


d∑

i=1
Di D2 · · · Dd

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


Di : m×m diagonal matrix, d : downsampling ratio, m: number of image pixels
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Theorem 2
aLet (C̄3)l,j denotes the jth block of the lth band of C̄3 for any l = 1, · · · , m̃λ.
Then, the solution Ū of the SE can be decomposed as

Ū =


ū1,1 ū1,2 · · · ū1,d

ū2,1 ū2,2 · · · ū2,d
...

...
. . .

...
ūm̃λ,1 ūm̃λ,2 · · · ūm̃λ,d


with

ūl,j =

 (C̄3)l,j

(
1
d

d∑
i=1

Di + λl
C Im
)−1

, j = 1,
1
λl

C

[
(C̄3)l,j − 1

d ūl,1Dj

]
, j = 2, · · · , d .

aQ. Wei et al., “Fast multi-band image fusion based on solving a Sylvester equation”, IEEE
Trans. Image Process., vol. 24, no. 11, pp. 4109-4121, Nov. 2015.
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Fast FUsion Based on a Sylvester Equation (FUSE)

Input: YM, YH, ΛM, ΛH, R, B, S, H
I D← Dec (B) and D = D∗D /*Circulant matrix: B = FDFH*/

I C1 ←
(

HHΛ−1
H H

)−1 (
(RH)H

Λ−1
L RH

)
;

I (Q,ΛC)← EigDec (C1) /* Eigen-dec of C1: C1 = QΛCQ−1 */
I C̄3 ←

Q−1
(

HHΛ−1
H H

)−1
(HHΛ−1

H YH (BS)H + (RH)H
Λ−1

L YM)BFP−1;

for l = 1 to m̃λ do

ūl,1 = (C̄3)l,1

(
1
d

d∑
i=1

Di + λl
C In
)−1

;

for j = 2 to d do
ūl,j = 1

λl
C

(
(C̄3)l,j − 1

d ūl,1Dj
)
;

end
end
Output: X = HQŪPD−1FH
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Fast fUsion Based on a Sylvester Equation (FUSE)

From ML to MAP Estimators

Generalization to Bayesian estimators14

I φ (X): Gaussian prior based on interpolation15

I φ (X): Sparse representation based on dictionary learning16

I φ (X): Total variation (TV)17

14Q. Wei et al., “Fast multi-band image fusion based on solving a Sylvester equation”, IEEE
Trans. Image Process., vol. 24, no. 11, pp. 4109-4121, Nov. 2015.

15Q. Wei et al., “Bayesian fusion of multi-band images,” IEEE J. Sel. Topics Signal Process., vol.
9, no. 6, pp. 1117-1127, Sept. 2015.

16Q. Wei et al., “Hyperspectral and multispectral image fusion based on a sparse
representation”, IEEE Trans. Geosci. and Remote Sens., vol. 53, no. 7, pp. 3658-3668, July 2015.

17M. Simões et al., “A convex formulation for hyperspectral image superresolution via
subspace-based regularization”, IEEE Trans. Geosci. and Remote Sens., vol. 53, no. 6, pp.
3373-3388, June 2015.
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Fast fUsion Based on a Sylvester Equation (FUSE)

Gaussian Prior

Gaussian prior: Sylvester equation embedded in BCD (FUSE-BCD)

Input: YH, YM, m̃λ, B, S, R, s2
0, Σ0

I Ĥ← PCA(YH, m̃λ) ; /* Subspace transform matrix */

for t = 1,2, . . . to stopping rule do
Ut = arg min

U
L(U,s2

t−1,Σt−1) ; /* Sylvester equation */

s2
t = arg min

s2
L(Ut ,s2,Σt−1) ; /* Optimize w.r.t. s2

*/

Σt = arg min
Σ

L(Ut ,s2
t ,Σ) ; /* Optimize w.r.t. Σ */

end
Output: X̂ = ĤÛ (High resolution HS image)
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Fast fUsion Based on a Sylvester Equation (FUSE)

Sparse Representation

Sparse prior: Sylvester equation embedded in BCD (FUSE-BCD)

Input: YH, YM, B, S, R, SNRH, SNRM, m̃λ, nmax
Output: X̂ (high resolution HS image)

I Approximate Ū using YM and YH /* Rough estimation of U*/
I D̂← ODL(Ū) /* Online dictionary learning */
I Â← OMP(D̂, Ū,nmax) /* Sparse coding */
I Ω̂← Â 6= 0 /* Computing support */
I Ĥ← PCA(YH, m̃λ) /* Computing subspace transform matrix */

/* Start alternate optimization */
for t = 1,2, . . . to stopping rule do

Ût ∈ {U : L(U, Ât−1) ≤ L(Ût−1, Ât−1)} /* solved with SE*/
Ât ∈ {A : L(Ût ,A) ≤ L(Ût , Ât−1)} /* solved with LS */

end
X̂ = ĤÛ
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Fast fUsion Based on a Sylvester Equation (FUSE)

Non-Gaussian Prior

Non-Gaussian prior, such as (TV)18

arg min
U

1
2
‖Λ−

1
2

H (YH − HUBS) ‖2
F︸ ︷︷ ︸

HS data term

+
1
2
‖Λ−

1
2

M (YM − RHU) ‖2
F︸ ︷︷ ︸

MS data term

+λTV (U)︸ ︷︷ ︸
regularizer

.

can be equivalently solved as

arg min
U,V

1
2
‖Λ−

1
2

H (YH − HUBS) ‖2
F +

1
2
‖Λ−

1
2

M (YM − RHU) ‖2
F + λTV (V)

s.t. U = V
I ADMM algorithm: Sylvester equation + proximity operator
I Sylvester equation embedded in ADMM (FUSE-ADMM)

18M. Simões et al., “A convex formulation for hyperspectral image superresolution via
subspace-based regularization”, IEEE Trans. Geosci. and Remote Sens., vol. 53, no. 6, pp.
3373-3388, June 2015.
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Fast fUsion Based on a Sylvester Equation (FUSE)

Performance and Computational Times

Table: Performance of HS+MS fusion methods: RSNR (in dB), UIQI, SAM (in
degree), ERGAS, DD (in 10−3) and time (in second).

Regularization Methods RSNR UIQI SAM ERGAS DD Time

supervised ADMM 29.321 0.9906 1.555 0.888 7.115 126.83
naive Gaussian FUSE 29.372 0.9908 1.551 0.879 7.092 0.38

unsupervised ADMM-BCD 29.084 0.9902 1.615 0.913 7.341 99.55
naive Gaussian FUSE-BCD 29.077 0.9902 1.623 0.913 7.368 1.09

sparse ADMM-BCD 29.582 0.9911 1.423 0.872 6.678 162.88
representation FUSE-BCD 29.688 0.9913 1.431 0.856 6.672 73.66

TV
ADMM 29.473 0.9912 1.503 0.861 6.922 134.21

FUSE-ADMM 29.631 0.9915 1.477 0.845 6.788 90.99

I The computational time is decreased significantly!
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Fast fUsion Based on a Sylvester Equation (FUSE)

Simulation Scenarios

Table: Characteristics of the three datasets19

dataset dimensions spatial res N instrument

Moffett
PAN 185× 395

HS 37× 79

20m

100m
224 AVIRIS

Camargue
PAN 500× 500

HS 100× 100

4m

20m
125 HyMap

Garons
PAN 400× 400

HS 80× 80

4m

20m
125 HyMap

19L. Loncan, L. B. Almeida, J. M. Bioucas-Dias, X. Briottet, J. Chanussot, N. Dobigeon, S. Fabre,
W. Liao, G. Licciardi, M. Simoes, J-Y. Tourneret, M. Veganzones, G. Vivone, Q. Wei and N. Yokoya,
“Hyperspectral pansharpening: a review”, IEEE Geosci. and Remote Sens. Mag., vol. 3, no. 3, pp.
27-46, Sept. 2015.
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Fast fUsion Based on a Sylvester Equation (FUSE)

Visual Results

(a) (b)

 (i) (j)

(c) (d) (e)

(f ) (g) (h)

Figure: Camargue. (a) Ref, (b) interpolation, (c) SFIM, (d) MTF GLP HPM,
(e) GSA, (f) PCA, (g) GFPCA, (h) CNMF, (i) Bayesian Sparse, (j) HySure.
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Fast fUsion Based on a Sylvester Equation (FUSE)

Camargue
Table: Quality measures for the Camargue dataset20

method CC SAM RMSE ERGAS Time(sec)

SFIM 0.91886 4.2895 637.1451 3.4159 3.47

MTF-GLP 0.92397 4.3378 622.4711 3.2666 4.26

MTF-GLP-HPM 0.92599 4.2821 611.9161 3.2497 4.25

GS 0.91262 4.4982 665.0173 3.5490 8.29

GSA 0.92826 4.1950 587.1322 3.1940 8.73

PCA 0.90350 5.1637 710.3275 3.8680 8.92

GFPCA 0.89042 4.8472 745.6006 4.0001 8.51

CNMF 0.93000 4.4187 591.3190 3.1762 47.54

Supervised Gaussian 0.95195 3.6428 489.5634 2.6286 7.35

Sparse represent. 0.95882 3.3345 448.1721 2.4712 485.13

HySure 0.94650 3.8767 511.8525 2.8181 296.27

20red: best green: second best blue: third best
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Fast fUsion Based on a Sylvester Equation (FUSE)

Moffet Field
Table: Quality measures for the Moffett field dataset21

method CC SAM RMSE ERGAS Time(sec)

SFIM 0.92955 9.5271 365.2577 6.5429 1.26

MTF-GLP 0.93919 9.4599 352.1290 6.0491 1.86

MTF-GLP-HPM 0.93817 9.3567 354.8167 6.1992 1.71

GS 0.90521 14.1636 443.4351 7.5952 4.77

GSA 0.93857 11.2758 363.7090 6.2359 5.52

PCA 0.89580 14.6132 463.2204 7.9283 3.46

GFPCA 0.91614 11.3363 404.2979 7.0619 2.58

CNMF 0.95496 9.4177 314.4632 5.4200 10.98

Supervised Gaussian 0.97785 7.1308 220.0310 3.7807 1.31

Sparse represent. 0.98168 6.6392 200.3365 3.4281 133.61

HySure 0.97059 7.6351 254.2005 4.3582 140.05

21red: best green: second best blue: third best
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Fast fUsion Based on a Sylvester Equation (FUSE)

Garons
Table: Quality measures for the Garons dataset22

method CC SAM RMSE ERGAS Time(sec)

SFIM 0.77052 6.7356 1036.4695 5.1702 2.74

MTF-GLP 0.80124 6.6155 956.3047 4.8245 4.00

MTF-GLP-HPM 0.79989 6.6905 962.1076 4.8280 2.98

GS 0.80347 6.6627 1037.6446 5.1373 5.56

GSA 0.80717 6.7719 928.6229 4.7076 5.99

PCA 0.81452 6.6343 1021.8547 5.0166 6.09

GFPCA 0.63390 7.4415 1312.0373 6.3416 4.36

CNMF 0.82993 6.9522 893.9194 4.4927 23.98

Supervised Gaussian 0.86857 5.8749 784.1298 3.9147 3.07

Sparse represent. 0.87834 5.6377 750.3510 3.7629 259.44

HySure 0.86080 6.0224 778.1051 4.0454 177.60

22red: best green: second best blue: third best
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Conclusions

Summary

I Fusion of multi band images formulated as a linear inverse
problem, which exploits explicitly the forward model

I Constrain the estimated image in a lower-dimensional space
I Definition of multiple priors within a (hierarchical) Bayesian

framework
I Gaussian prior
I Sparse prior from dictionary learning

I Estimation of noise variances is possible with the proposed
algorithm

I The spectral response of the MS image can be included in the
estimation at the price of a higher computational complexity

I Toward fast fusion by solving a Sylvester equation: can be
generalized to various priors
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Conclusions

Future Work

I Blind Hyperspectral Unmixing
I joint estimation of the HS and MS degradation operators: B and R

(a) Kernel of B
(Spatial blurring)

10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

Band

F
2

(b) R (Spectral blurring)

I incorporating other physical models: unmixing, MRF, etc.
I Tensor Analysis?

C. I. Kanatsoulis, X. Fu, N. D. Sidiropoulos and W.-K. Ma,
“Hyperspectral Super-Resolution: A Coupled Tensor Factorization
Approach,” https://arxiv.org/pdf/1804.05307.pdf, April 2018.
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Conclusions

Future Work

I Real data
I Misregistration: different sensors, platforms
I Nonlinear degradations: translation, rotation, stretching

(c) Nonlinear Unmixing (d) Myth or Reality?

N. Dobigeon, J.-Y. Tourneret, C. Richard, J. C. M. Bermudez, S. McLaughlin and A. O.

Hero, “Nonlinear unmixing of hyperspectral images: models and algorithms,” IEEE

Signal Processing Magazine, Jan. 2014.
I Regularization parameters: included within the estimation scheme

Jean-Yves Tourneret Bayesian Fusion of Multi-band Images 103 / 107



Bayesian Fusion of Multi-band Images

Conclusions

Challenge 1: Multi-temporal Images

Fusion of Snoopy and Nishino Japanese Islands - Pleiades Images

Thanks to the CNES of Toulouse for providing these Pleiades images
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Conclusions

Challenge 2: Endmember variability

How to account for endmember variability in the fusion of hyperspectral and
PAN/Multispectral Images?

Thanks to Alina Zare from the university of Missouri-Columbia for providing this image
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Conclusions

Thanks to my student QI WEI!!

Qi WEI
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Conclusions

Thanks for your attention! Questions?
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Robustness with respect to R

FSNR: defined to adjust the knowledge of R

FSNR = 10 log10

(
‖R‖2

F

mλnλ,2s2
2
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When FSNR is above 8dB, the proposed method outperforms the
MAP and wavelet-based MAP methods.
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How to proceed when R is unknown?

YH = XBS + NH, YM = RX + NM

I X ∈ Rmλ×n: full resolution unknown image
I YH ∈ Rmλ×m and YM ∈ Rnλ×n: observed HS and MS images
I B ∈ Rn×n: cyclic convolution operator acting on the bands
I S ∈ Rn×m: downsampling matrix
I R ∈ Rnλ×mλ : spectral response of the MS sensor
I NH ∈ Rmλ×m and NM ∈ Rnλ×n: HS and MS noises, assumed to

be a band-dependent Gaussian sequence

(g) Kernel of B
(Hyperspectral)

10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

Band

F
2

(h) R (Multispectral)
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Block Gibbs sampler with unknown R

for t = 1 to NMC do
% Sampling the image covariance matrix

Sample Σ
(t)
u from f (Σ|U(t−1),s2(t−1)

,YH,YM)
% Sampling the multispectral noise variances

for ` = 1 to nλ do
Sample s2(t)

M,` from f (s2
M,`|U(t−1),YM),

end for
% Sampling the hyperspectral noise variances

for ` = 1 to mλ do
Sample s2(t)

H,` from f (s2
H,`|U(t−1),YH),

end for
% Sampling the pseudo spectral response

Sample R from f (R|U(t−1), s2
M
(t)
,YM)23

% Sampling the high-resolved image

Sample U(t) using a Hamiltonian Monte Carlo algorithm
end for

23Q. Wei et al., “Bayesian fusion of multispectral and hyperspectral images with unknown sensor
spectral response”, in Proc. ICIP, Paris, France, Oct. 2014.
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(a) MAP (b) Wavelet MAP (c) HMC (known R) (d) HMC (R̂)
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Quantitative fusion results

Table: Performance of the compared fusion methods: RSNR (in dB), UIQI,
SAM (in degree), ERGAS, DD (in 10−2) and Time (in second)(AVIRIS
dataset).

Methods RSNR UIQI SAM ERGAS DD Time
MAP 16.655 0.9336 5.739 3.930 2.354 3

Wavelet MAP 19.501 0.9626 4.186 2.897 1.698 73
MCMC with known R 21.913 0.9771 3.094 2.231 1.238 8811

MCMC with mismatched R24 21.804 0.9764 3.130 2.260 1.257 8388
MCMC with R estimated 21.897 0.9769 3.101 2.234 1.244 10471

24FSNR= 10dB.
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Estimation of the Spectral Response R
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formulation for hyperspectral image superresolution via subspace-based
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June 2015.

I N. Yokoya, N. Mayumi, and A. Iwasaki “Cross-calibration for data fusion of
EO-1/Hyperion and Terra/ASTER,” IEEE J. Select. Topics Appl. Earth Observ.
Remote Sensing, vol. 6, pp. 419-426, Apr. 2013.

I X. Otazu, M. González-Audı́cana, O. Fors and J. Núñez, “Introduction of sensor
spectral response into image fusion methods. Application to wavelet-based
methods ,” IEEE Trans. Geosci. and Remote Sens., vol. 47, no. 11, pp.
3834-3843, Nov. 2009.
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Performance versus λ
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Figure: Performance of the proposed fusion algorithm versus λ.
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Variational approaches

Observation models

I Hyperspectral (HS) image

YH = XW + NH

where X ∈ Rmλ×n, YH,NH ∈ Rmλ×m (with m < n), W ∈ Rn×m performs
spatial averaging and downsampling. Note that the distribution of NH

does not need to be specified.
I Panchromatic (PAN) or Multispectral (MS) image

YM = RX + NM

where Y ∈ Rnλ×n, R ∈ Rnλ×mλ is the spectral response of the MS
sensor and NM ∈ Rnλ×m

I Dimensionality reduction
X = HU
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Variational approaches

HySure Algorithm

min
U

L(U) =
1
2
∥∥YH − HUBS

∥∥2
F +

λM

2
∥∥YM − RHU

∥∥2
F +

λ

2
φ(UDh,UDv )

where Dh and Dv compute the horizontal and vertical differences and φ is a
vector total variation ensuring smooth spatial variations.

References
I M. Simões, J. Bioucas-Dias, L. B. Almeida and J. Chanussot, “A Convex

Formulation for Hyperspectral Image Superresolution (HySure) via
Subspace-based Regularization,” IEEE Trans. Geosci. Remote Sens., vol. 53,
no. 6, pp. 3373-3388, June 2015.

I X. He, L. Condat, J. Bioucas-Dias and J. Chanussot,“A New Pansharpening
Method Based on Spatial and Spectral Sparsity Priors,” IEEE Trans. Image
Process., vol. 23, no. 9, pp. 4160-4171, Sep. 2014.
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