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25 years of particles and other random points 

Neil Gordon, David Salmond and Adrian Smith 



PERSONAL REFLECTIONS  

Adrian Smith 

University of London 



Today: Commonplace approach  

Complex applications 

Graphical/hierarchical models 

Bayesian computation via simulation 

In particular, Particle Filtering 

 

 

 



How did we get here? 

 



 

• Mid-1960s Statistical Context? 



CAMBRIDGE MATHEMATICS 

•Mid-1960s 

•Probability 

•No statistics 



POST-WAR DEBATES 

• Fisher 

• Neyman-Pearson 

 



FISHER 

• Maximum likelihood 

• Significance tests 

• Fiducial inference 

 



NEYMAN-PEARSON 

• Hypothesis tests 

• MV unbiased estimation 

• Properties of procedures 



WALD (1950) 

Decision theory 

Complete class theorems 

(Bayes as “mathematics”) 



DENNIS LINDLEY 

1923-2013 

  



CLASH! 

• Ideas 

• Personalities 



LINDLEY’S DISSATISFACTION 

• Ad hoc approaches 

• Cult of personality 

 



MATHEMATICS IN GENERAL 

• Desiderata 

• Axioms 

• Derived theory 

 

(e.g. Kolmogorov/probability) 

 



LINDLEY KNOWLEDGE BASE 

• Bayes 

• Laplace 

• Gauss 

 

• Jeffreys 

(lectures) 

 



AND … 

• Wald! 

• Decision theory 

• Complete class theorems 

 



EARLY 1950S 

• Lindley’s intellectual goal 

• Give statistics a firm axiomatic foundation 

 



 

Emphasises Bayes rule aspects of Wald 

(Still a frequentist!) 

 

KEY 1953 PAPER  

‘Statistical Inference’ 



1954 

• Went to USA 

• Work with L. J. Savage 

 



ASTONISHING OUTCOME 

Axiomatic attempts to underpin classical statistics inevitably led 

to Bayes! 

 



LINDLEY/SAVAGE 

Acknowledged debts to 

• Ramsey 

• De Finetti 

 



 

1967  

Head of Statistics Department 

University College London 

 

 
Opportunity to build Bayesian School 

 



LINDLEY/SMITH (1972) 

• Hierarchical models 

• Structured priors 

• Minimal use of vague priors 

   (latter in low dimensions) 



BAYES DECEPTIVELY SIMPLE 

Posterior = Constant x Likelihood x Prior 

 

Sequential learning: Posterior (t) = Prior (t+1) 

 



BUT … 

Big problem of computation! 



NOTTINGHAM GROUP (1980s) 
(efficient computation up to 8 dimensions) 

Gauss-Hermite Quadrature 

Reparameterization 

Quasi Monte Carlo 



BUT 8-D STILL WOEFULLY 

INADEQUATE! 
 

• Eg Pharmacokinetics/dynamics 

• 100’s of individual 5-D non-linear regressions 

• Population distribution of 5-vectors 

 

 



FOCUSSED ATTACK ON 

COMPUTATION 

(1988/89) 

Review of related ideas 



• EM algorithm (Dempster, Laird, Rubin, 1977) 

• Image Analysis (Geman and Geman, 1984 ) 

• Importance sampling (Rubin, 1987/1988) 

• Laplace approximation (Tierney and Kadane, 1986) 

• Data augmentation (Tanner and Wong, 1987) 

    



Gibbs Sampler 

Donald Geman Stuart Geman 

(1984) 





Breakthrough (with Alan Gelfand) 

Sampling-Based Approach to Calculating Marginal 

Densities 

(Technical Report 1988: JASA 1990) 

 

Illustration paper with Amy Racine-Poon, Sue Hills 



Explosion of … 

• MCMC methodological developments 

 

• Application to complex problems 



Don Rubin 

Importance sampling 

(Rubin, 1987/1988) 

 



Sampling-Importance-Resampling 

Replace Prior/Posterior Functions 

By Sampled Point Clouds 

 

(Non-Linear Signal Processing) 

 

Goodbye‘tweaks’ to Kalman Filters! 



THE REST IS HISTORY! 
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David Salmond 



Back in 1991, 1992 … 

John Major was the British 
Prime Minister 

George Bush Senior was 
in White House (soon to 
be replaced by Bill 
Clinton) 

Boris Yeltsin was in the 
Kremlin 



Recursive Bayesian Estimation:  
Available Information (discrete case) 

• System model (dynamics) 

   𝒙𝑘 = 𝒇𝑘−1 𝒙𝑘−1 , 𝒘𝑘−1             𝑝(𝒙𝑘 | 𝒙𝑘−1) 

 

• Measurement model 

         𝒛𝑘 = 𝒉𝑘 𝒙𝑘 , 𝒗𝑘                      𝑝(𝒛𝑘 | 𝒙𝑘) 

 

• Initial information (prior):           𝑝(𝒙0)  

• Measurements:      𝑍𝑘 = 𝒛1, … , 𝒛𝑘  
 

• Require:   𝑝(𝒙𝑘 | 𝑍𝑘) 

 

  

Posterior  pdf 

Transition 

Density 

Likelihood 

(at each time step k )  

Prior at k=0 



The recursive Bayesian estimator can be viewed as a sequence of static problems (updates) interspersed 
by dynamic transitions (predictions) 

 𝑝(𝒙0)    𝑝(𝒙1)  

𝑝 𝒙2  𝑍1)   𝑝 𝒙2  𝑍2) Update at k=2 using measurement 𝒛2  𝑍2 = 𝒛1, 𝒛2   

Prediction from k=0 to k=1 

 𝑝(𝒙1)   𝑝 𝒙1  𝑍1)  Update at k=1 using measurement 𝒛1  𝑍1 = 𝒛1   

𝑝 𝒙1  𝑍1)   𝑝 𝒙2  𝑍1) Prediction from k=1 to k=2 

𝑝 𝒙2  𝑍2)   𝑝 𝒙3  𝑍2) Prediction from k=2 to k=3 

𝑝 𝒙3  𝑍2)   𝑝 𝒙3  𝑍3) Update at k=3 using measurement 𝒛3  𝑍3 = 𝒛1, 𝒛2, 𝒛3   

𝑝 𝒙3  𝑍3)   𝑝 𝒙4  𝑍3) Prediction from k=3 to k=4 

 𝑝(𝑥1) 

 𝑝 𝑥1  𝑍1) 

 𝑝 𝑥2  𝑍1) 

 𝑝 𝑥2  𝑍2) 

 𝑝 𝑥3  𝑍2) 

 𝑝 𝑥3  𝑍3) 

 𝑝 𝑥4  𝑍3) 

𝑥1 

𝑥1 

𝑥2 

𝑥2 

𝑥3 

𝑥3 

𝑥4 



Prediction: 

Update: 

(Bayes rule) 

TRANSITION DENSITY 

(SYSTEM DYNAMICS) 

LIKELIHOOD 

(MEASUREMENT MODEL) 

PRIOR POSTERIOR 

General (Formal) Bayesian  

Recursive Estimator 

Ho and Lee, “A Bayesian approach to problems in stochastic 
estimation and control”,  IEEE Trans AC-9, Oct 1964, pp 333-339. 

     𝑝  𝒙𝑘+1  𝑍𝑘 )  =    𝑝  𝒙𝑘+1  𝒙𝑘) 𝑝  𝒙𝑘  𝑍𝑘 ) 𝑑𝒙𝑘 

𝑝  𝒙𝑘  𝑍𝑘 )   ∝   𝑝  𝒛𝑘  𝒙𝑘 )  𝑝  𝒙𝑘  𝑍𝑘−1 ) 

  𝑘 ≔ 𝑘 + 1 



Posterior samples at 𝑘 :   

 𝒙𝑘 𝑖 : 𝑖 = 1,… , 𝑁  
 
𝑝 𝒙𝑘  𝑍𝑘 )  

Prior samples at 𝑘 : 

 𝒙𝑘
∗ 𝑖 : 𝑖 = 1,… , 𝑁  

 
𝑝 𝒙𝑘  𝑍𝑘−1 )  

Update operation 

(Bayes rule via SIR) 

𝒙𝑘
∗ 𝑖 → 𝒙𝑘 𝑖  

Prediction 

operation 

𝒙𝑘 𝑖 → 𝒙𝑘+1
∗ 𝑖    𝑘 ≔ 𝑘 + 1 

Measurement 𝒛𝑘  

Basic particle filter: manipulate sets of random samples 

(a mechanisation of the formal Bayesian recursive filter) 



. . . . . . . . 

. . . . 

𝑝 𝑥𝑘 𝒛𝑘) 
Likelihood 
 at k 

Prior particles at k 
(propagated from k-1)  

Particles at k weighted 
according to likelihood  

Prior particles at k+1 
after resampling and 
prediction 

Particles at k+1 weighted 
according to likelihood  

Prior particles at k+2 
after resampling and 
prediction 

𝑝 𝑥𝑘+1  𝒛𝑘+1) 
Likelihood 
 at k+1 

Time 

𝑥𝑘 

𝑥𝑘+1 

( Adapted from “Particle filtering” by P Djuric et al, IEEE Sig Proc Magazine, Sept 2003 ) 



1-D example, “nonstationary growth model” 

Dynamics model:      𝑥𝑘 =
𝑥𝑘−1

2
+ 

25 𝑥𝑘−1

1+ 𝑥𝑘−1
2 + 8cos 1.2(𝑘 − 1) + 𝑤𝑘 

where 𝑤𝑘~𝑁(0,10) and 𝑣𝑘~𝑁 0,1  .  Measurement model:   𝑧𝑘 =
𝑥𝑘
2

20
+ 𝑣𝑘 

 

[  From KITTAGAWA, G.: ’Rejoinder to Non-Gaussian state-space modelling of 
nonstationary time series’, J . Amer. Statistical Assoc., 1987, Vol 82, pp 1060-1063  
]   

Likelihood (normalised) for 
each measurement showing 
modes 

A realisation of the time series and associated 
measurements : 

For  𝑧𝑘 > 0, likelihood 

has modes at ± 20 𝑧𝑘  



Point estimates (posterior means) from particle filter and EKF 

Particle filter: truth maintained 
between 2 and 98 percentile 
interval  

EKF shows serious divergence 
for most of the time 



Red = actual evolution of state 

EKF – posterior Gaussian pdf from filter 
state estimate and covariance   

Particle filter – kernel density pdf constructed 
from posterior sample sets (500 particles) 

Evolution of posterior pdf from the filters 



 𝑥𝑘
𝑜 , 𝑦𝑘

𝑜  
observer 

 𝑥𝑘
  , 𝑦𝑘

  
target 

 𝑦 

 𝑥 

𝜃𝑘  

Noisy measurements of target bearing relative to observer: 

𝑧𝑘 = 𝜃𝑘 + 𝑣𝑘 = tan−1
𝑦𝑘
 −𝑦𝑘

𝑜

𝑥𝑘
 −𝑥𝑘

𝑜 + 𝑣𝑘  

Nonlinear 
measurement function 

Estimate target trajectory in position and velocity   𝑥  , 𝑥  , 𝑦  , 𝑦  𝑘  given knowledge of observer’s 
positions   𝑥𝑜, 𝑦𝑜 𝑘  (assumed perfect). 

  

Likelihood of (𝑥, 𝑦) for 
the  measurement 
𝑧 = 0 

𝑝 𝑧 = 0 𝑥, 𝑦) 
 

Bearings-only tracking 



Bearings-only tracking example:  
Tracking a gently manoeuvring target (near constant velocity model) which passes close to a stationary observer 
Gaussian prior on initial target position (SD≅ 0.3) and velocity (SD≅ 0.005)  

Direction of target travel 

Stationary 
observer located at 
origin 

Point of closest approach 
– line-of-sight rate is 
maximum  

Time step 

EKF diverges 



Why we thought the scheme might be significant: 
 
It provides the posterior distribution of the state (in sample representation) rather than just the mean and 
covariance 
 
It works for essentially any distribution / likelihood – multimodal, fragmented over the state space, with 
hard edges, with restricted domains etc 
 
Basic filter is very simple 
 
Optimal performance can be approached just by increasing the number of particles (admittedly only 
practical for low dimensional problems with reasonable system noise) 
 
Algorithmically it does not resemble the Kalman recipe 
 
Only need to evaluate the likelihood for the update (at possibly many points) – no need to derive Jacobians 
 



Adrian Smith Neil Gordon, working towards 
a PhD, supervised by Adrian 

Salmond 

Professor of Statistics at 
Imperial College 

At the Defence Research Agency, Farnborough 
(previously the Royal Aircraft Establishment) 

How things looked in 1992 



Theoretical 
developments 

Foundations: P Del Moral (1994), T Lyons (1997), J Liu, R Chen (1998)  
Convergence: D Crisan, A Doucet (2000) 
Smoothing:  S Godsill, T Clapp (1999), G Kitagawa (1996) 
Rao-Blackwellisation: A Doucet (1998), J de Freitas (2000) 
Regularisation: C Musso, N Oudjane (1998) 
Implementation: P Clifford, P Fearnhead (1999) 

Target  
tracking 

Bearings-only / Range-only:  B Ristic, S Arulampalam (2000) 
Manoeuvring (multiple model): S McGinnity, G Irwin (1998) 
Multiple targets: D Avitzour (1995), C Hue, J-P LeCadre, P Perez (2002), S 
Maskell 
Group tracking: M Moreland (2002) 
Track-before-detect: Y Boers (2001) 
Radar applications: H Driessen,  M Rutten 

Robotics / 
navigation 

Road networks / terrain aided:  F Gustafsson, N Bergman (1999) 
Robot localisation: D Fox, F Dellaert, S Thrun (1998) 

Signal/ image 
processing 
 

Contour tracking in images (“condensation”): A Blake, M Isard (1996) 
Model selection, communications applications: P Djuric (1999) 
Signal reconstruction: S Godsill (1997) 
Nonlinear time series: G Kitagawa (1996) 
Econometrics: M Pitt, N Shepard (1997) 
Semiconductor composition estimation: A Marrs (2001) 
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Neil Gordon 
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Bayesian Stats in the 80s 
 Late 70s-early 80s focus was efficient numerical integration 

tools 

 Gelfand & Smith (90) showed how sample based methods 
could revolutionise Bayesian statistics 

 MCMC methods 
• Gibbs 

• Metropolis-Hastings 

 Great for off-line batch analysis 

 We wanted on-line recursive … 
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Important seminar 
 Adrian’s seminar “Bayesian statistics without tears” 

 Had idea … kept quiet! 

 Discussed in “office” (to avoid phone calls) 

 Carefully wrote down on train going home 

 

 Important :  
– pay attention in seminars …  

– no sleeping …  

– you never know! 

Source : tripadvisor.com.au 
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What computing was available in 1989? 

Source : wikipedia.org 



56 

OK … not quite that bad … But still … 

Source : www.publicdomainimages.net 

Source : en.wikipedia.org 
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1990s Google image search “particle filter”  

Source : en.wikipedia.org 
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And now …. 
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 ASIR 

 Rao-Blackwellisation 

 VRPF 

 

 GPS free navigation on HP ipaq 

 Track before detect 

 Migrating birds 

 Finding AE1 

 

 

My favourite developments and applications 



60 

Future trends? 

 Higher power computing - better approximation to Bayesian 
solution 

 Streaming data at scale 

 Model based vs data based 

 Context enhanced processing 

 Likelihood-free and digital twin 
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The search for MH370 

Source : ATSB 
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MH370 Flight Path Reconstruction Team 
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Source : ATSB 
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Bayesian Approach 
 Prior 

– Radar data 

 Likelihood 
– Inmarsat metadata (BTO, BFO) 

 Dynamics 
– Cruise and manoeuvre 

– Environmental data 

 

 GOAL : PDF at time of final electronic communication 
– Descent scenarios defined by ATSB 
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Inmarsat Satellite Fleet 

3F5 
25E 

 

3F2 
15.5W 

AOR-W 

AOR-E 

POR 

APAC 
AMER 

4F3 
98W 

3F4 
54W 

4F2 
25E 

4F1 
143.5E 

Alphasat 
25E 

5F1 
63E 

3F3 
178E 

3F1 
64E 

IOR 

EMEA 
Source : INMARSAT 
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Burst Timing Offset 
Inmarsat 3  

IOR Satellite 

Inmarsat Ground Earth Station 

Perth (Australia) 
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Burst Frequency Offset (residual Doppler) 

δfsat 

δfcomp 
δfbias 

δfAFC 

(Measured – Expected) frequency at GES 

Eclipse? 
Source : INMARSAT 
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18:41 

19:41 

20:41 

21:41 

22:41 

23:13 

00:11 

18:28 

00:19 
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BTO and BFO : Simple summary 

 BTO 

– Constrains allowable locations at time of transmission 

– Uncertainty calibrated from flight data 

 BFO 

– Constrains allowable (speed,heading) at time of transmission 

– Highly sensitive to vertical speed 

– Uncertainty calibrated from flight data 

 

 Sparse set of data 

 What is possible between transmission times? 
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How are commercial aircraft flown … Autopilot 

 Lateral Navigation 

 Constant - Magnetic/True - Heading/Track 

Source : ATSB 
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Aircraft dynamics : Manoeuvre/Cruise 

 Deliberate manoeuvres commanded via autopilot 

 Cruise : OU model 

 Manoeuvre : Speed, direction, altitude 

 Unknown autopilot mode 

– CMH, CTH, CMT, CTT, LNAV, CI 

 Validate parameters of model with known flight data 
– But retain flexibility on rate of manoeuvre occurrence 

 Wind and air temperature is important 
– Calibrate BOM error model with known flight data 

Sequence of deliberate manoeuvres interspersed with periods of cruise 
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MH370 search  
Inmarsat data only 
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 Problem involves many sources of uncertainty 
– Measurement error in BTO, BFO 

– Uncertainty in BFO offset, aircraft dynamics, possible manoeuvres, wind 
speed/direction, eclipse calibration 

 Calculate PDF at time of final transmission 

 Procedure validated with data from previous flights reflecting 
all above uncertainties 

 Descent PDF defined by ATSB informed by 
 Descent rate bounds 

 Boeing flight simulator 

 Condition of debris 
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Bayesian Methods in the Search for MH370 

 

Sam Davey 

Neil Gordon 

Ian Holland 

Mark Rutten 

Jason Williams 

 

ISBN 978-981-10-0378-3 

Springer Briefs in Signal Processing 

May 2016 

 

Open Access 
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Challenge : Produce your solution to pdf 

 

MH370@dsto.defence.gov.au 
 


